Iris Training

Iris flower data set,

Input:

Output:

from sklearn import datasets
from pandas import *
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix
from numpy import array

from sklearn import model_selection
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC

from IPython.display import HTML, display
from tabulate import tabulate

def table(df): display(HTML(tabulate(df, tablefmt='html', headers='keys', showindex=False)))
# IRIS
iris = datasets.load_iris()
print(iris.DESCR)
.. _iris_dataset:

Iris plants dataset
--------------------

**Data Set Characteristics:**

    :Number of Instances: 150 (50 in each of three classes)
    :Number of Attributes: 4 numeric, predictive attributes and the class
    :Attribute Information:
        - sepal length in cm
        - sepal width in cm
        - petal length in cm
        - petal width in cm
        - class:
                - Iris-Setosa
                - Iris-Versicolour
                - Iris-Virginica

    :Summary Statistics:

    ============== ==== ==== ======= ===== ====================
                    Min  Max   Mean    SD   Class Correlation
    ============== ==== ==== ======= ===== ====================
    sepal length:   4.3  7.9   5.84   0.83    0.7826
    sepal width:    2.0  4.4   3.05   0.43   -0.4194
    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)
    petal width:    0.1  2.5   1.20   0.76    0.9565  (high!)
    ============== ==== ==== ======= ===== ====================

    :Missing Attribute Values: None
    :Class Distribution: 33.3% for each of 3 classes.
    :Creator: R.A. Fisher
    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
    :Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature.  Fisher's paper is a classic in the field and
is referenced frequently to this day.  (See Duda & Hart, for example.)  The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant.  One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

.. topic:: References

   - Fisher, R.A. "The use of multiple measurements in taxonomic problems"
     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
     Mathematical Statistics" (John Wiley, NY, 1950).
   - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.
     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.
   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
     Structure and Classification Rule for Recognition in Partially Exposed
     Environments".  IEEE Transactions on Pattern Analysis and Machine
     Intelligence, Vol. PAMI-2, No. 1, 67-71.
   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions
     on Information Theory, May 1972, 431-433.
   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II
     conceptual clustering system finds 3 classes in the data.
   - Many, many more ...
# IRIS TRAINING OUTPUT
data = [list(s)+[iris.target_names[iris.target[i]]] for i,s in enumerate(iris.data)]
dataset = DataFrame(data, columns=iris.feature_names+['class'])
table(dataset)
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)class
5.1 3.5 1.4 0.2setosa
4.9 3 1.4 0.2setosa
4.7 3.2 1.3 0.2setosa
4.6 3.1 1.5 0.2setosa
5 3.6 1.4 0.2setosa
5.4 3.9 1.7 0.4setosa
4.6 3.4 1.4 0.3setosa
5 3.4 1.5 0.2setosa
4.4 2.9 1.4 0.2setosa
4.9 3.1 1.5 0.1setosa
5.4 3.7 1.5 0.2setosa
4.8 3.4 1.6 0.2setosa
4.8 3 1.4 0.1setosa
4.3 3 1.1 0.1setosa
5.8 4 1.2 0.2setosa
5.7 4.4 1.5 0.4setosa
5.4 3.9 1.3 0.4setosa
5.1 3.5 1.4 0.3setosa
5.7 3.8 1.7 0.3setosa
5.1 3.8 1.5 0.3setosa
5.4 3.4 1.7 0.2setosa
5.1 3.7 1.5 0.4setosa
4.6 3.6 1 0.2setosa
5.1 3.3 1.7 0.5setosa
4.8 3.4 1.9 0.2setosa
5 3 1.6 0.2setosa
5 3.4 1.6 0.4setosa
5.2 3.5 1.5 0.2setosa
5.2 3.4 1.4 0.2setosa
4.7 3.2 1.6 0.2setosa
4.8 3.1 1.6 0.2setosa
5.4 3.4 1.5 0.4setosa
5.2 4.1 1.5 0.1setosa
5.5 4.2 1.4 0.2setosa
4.9 3.1 1.5 0.2setosa
5 3.2 1.2 0.2setosa
5.5 3.5 1.3 0.2setosa
4.9 3.6 1.4 0.1setosa
4.4 3 1.3 0.2setosa
5.1 3.4 1.5 0.2setosa
5 3.5 1.3 0.3setosa
4.5 2.3 1.3 0.3setosa
4.4 3.2 1.3 0.2setosa
5 3.5 1.6 0.6setosa
5.1 3.8 1.9 0.4setosa
4.8 3 1.4 0.3setosa
5.1 3.8 1.6 0.2setosa
4.6 3.2 1.4 0.2setosa
5.3 3.7 1.5 0.2setosa
5 3.3 1.4 0.2setosa
7 3.2 4.7 1.4versicolor
6.4 3.2 4.5 1.5versicolor
6.9 3.1 4.9 1.5versicolor
5.5 2.3 4 1.3versicolor
6.5 2.8 4.6 1.5versicolor
5.7 2.8 4.5 1.3versicolor
6.3 3.3 4.7 1.6versicolor
4.9 2.4 3.3 1 versicolor
6.6 2.9 4.6 1.3versicolor
5.2 2.7 3.9 1.4versicolor
5 2 3.5 1 versicolor
5.9 3 4.2 1.5versicolor
6 2.2 4 1 versicolor
6.1 2.9 4.7 1.4versicolor
5.6 2.9 3.6 1.3versicolor
6.7 3.1 4.4 1.4versicolor
5.6 3 4.5 1.5versicolor
5.8 2.7 4.1 1 versicolor
6.2 2.2 4.5 1.5versicolor
5.6 2.5 3.9 1.1versicolor
5.9 3.2 4.8 1.8versicolor
6.1 2.8 4 1.3versicolor
6.3 2.5 4.9 1.5versicolor
6.1 2.8 4.7 1.2versicolor
6.4 2.9 4.3 1.3versicolor
6.6 3 4.4 1.4versicolor
6.8 2.8 4.8 1.4versicolor
6.7 3 5 1.7versicolor
6 2.9 4.5 1.5versicolor
5.7 2.6 3.5 1 versicolor
5.5 2.4 3.8 1.1versicolor
5.5 2.4 3.7 1 versicolor
5.8 2.7 3.9 1.2versicolor
6 2.7 5.1 1.6versicolor
5.4 3 4.5 1.5versicolor
6 3.4 4.5 1.6versicolor
6.7 3.1 4.7 1.5versicolor
6.3 2.3 4.4 1.3versicolor
5.6 3 4.1 1.3versicolor
5.5 2.5 4 1.3versicolor
5.5 2.6 4.4 1.2versicolor
6.1 3 4.6 1.4versicolor
5.8 2.6 4 1.2versicolor
5 2.3 3.3 1 versicolor
5.6 2.7 4.2 1.3versicolor
5.7 3 4.2 1.2versicolor
5.7 2.9 4.2 1.3versicolor
6.2 2.9 4.3 1.3versicolor
5.1 2.5 3 1.1versicolor
5.7 2.8 4.1 1.3versicolor
6.3 3.3 6 2.5virginica
5.8 2.7 5.1 1.9virginica
7.1 3 5.9 2.1virginica
6.3 2.9 5.6 1.8virginica
6.5 3 5.8 2.2virginica
7.6 3 6.6 2.1virginica
4.9 2.5 4.5 1.7virginica
7.3 2.9 6.3 1.8virginica
6.7 2.5 5.8 1.8virginica
7.2 3.6 6.1 2.5virginica
6.5 3.2 5.1 2 virginica
6.4 2.7 5.3 1.9virginica
6.8 3 5.5 2.1virginica
5.7 2.5 5 2 virginica
5.8 2.8 5.1 2.4virginica
6.4 3.2 5.3 2.3virginica
6.5 3 5.5 1.8virginica
7.7 3.8 6.7 2.2virginica
7.7 2.6 6.9 2.3virginica
6 2.2 5 1.5virginica
6.9 3.2 5.7 2.3virginica
5.6 2.8 4.9 2 virginica
7.7 2.8 6.7 2 virginica
6.3 2.7 4.9 1.8virginica
6.7 3.3 5.7 2.1virginica
7.2 3.2 6 1.8virginica
6.2 2.8 4.8 1.8virginica
6.1 3 4.9 1.8virginica
6.4 2.8 5.6 2.1virginica
7.2 3 5.8 1.6virginica
7.4 2.8 6.1 1.9virginica
7.9 3.8 6.4 2 virginica
6.4 2.8 5.6 2.2virginica
6.3 2.8 5.1 1.5virginica
6.1 2.6 5.6 1.4virginica
7.7 3 6.1 2.3virginica
6.3 3.4 5.6 2.4virginica
6.4 3.1 5.5 1.8virginica
6 3 4.8 1.8virginica
6.9 3.1 5.4 2.1virginica
6.7 3.1 5.6 2.4virginica
6.9 3.1 5.1 2.3virginica
5.8 2.7 5.1 1.9virginica
6.8 3.2 5.9 2.3virginica
6.7 3.3 5.7 2.5virginica
6.7 3 5.2 2.3virginica
6.3 2.5 5 1.9virginica
6.5 3 5.2 2 virginica
6.2 3.4 5.4 2.3virginica
5.9 3 5.1 1.8virginica
dataset.describe()
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
count 150.000000 150.000000 150.000000 150.000000
mean 5.843333 3.057333 3.758000 1.199333
std 0.828066 0.435866 1.765298 0.762238
min 4.300000 2.000000 1.000000 0.100000
25% 5.100000 2.800000 1.600000 0.300000
50% 5.800000 3.000000 4.350000 1.300000
75% 6.400000 3.300000 5.100000 1.800000
max 7.900000 4.400000 6.900000 2.500000
dataset.groupby('class').size()
class
setosa        50
versicolor    50
virginica     50
dtype: int64
dataset.plot(kind='box', subplots=True, layout=(2,4), figsize=(20,10), sharex=False, sharey=False)
plt.show()

png

# histograms
dataset.hist(figsize=(20,10))
plt.show()

png

scatter_matrix(dataset, figsize=(20,10))
plt.show()

png

# Split-out validation dataset
array = dataset.values
X = array[:,0:4]
Y = array[:,4]
# Make predictions on validation dataset

seed = 1

def do_training(train_size, classifierC):
    X_train, X_validation, Y_train, Y_validation = \
        model_selection.train_test_split(X, Y, \
        train_size=train_size, random_state=seed)
    classifier = classifierC()
    classifier.fit(X_train, Y_train)
    p = classifier.predict(X_validation)
    return accuracy_score(Y_validation, p)

trainset = [[
            s/10, 
            do_training(s/10, LinearDiscriminantAnalysis),
            do_training(s/10, KNeighborsClassifier),
            do_training(s/10, DecisionTreeClassifier),
            do_training(s/10, GaussianNB),
            ] for s in range(1,10,1)]
print("Training Size & Classifier comparison at seed =", seed)

trainframe = DataFrame(trainset, columns=["Train_size (%)", "LinearDiscriminantAnalysis", "KNeighborsClassifier", "DecisionTreeClassifier", "GaussianNB"])

trainframe.plot(x ='Train_size (%)', figsize=(20,10))
table(trainframe)
Training Size & Classifier comparison at seed = 1
Train_size (%) LinearDiscriminantAnalysis KNeighborsClassifier DecisionTreeClassifier GaussianNB
0.1 0.933333 0.948148 0.918519 0.948148
0.2 0.966667 0.933333 0.908333 0.933333
0.3 0.980952 0.980952 0.933333 0.961905
0.4 0.977778 0.977778 0.922222 0.966667
0.5 0.986667 0.946667 0.973333 0.96
0.6 0.983333 0.983333 0.966667 0.95
0.7 1 0.977778 0.955556 0.933333
0.8 1 1 0.966667 0.966667
0.9 1 1 1 1

png